Monday, 16 September 2013

The Voyage of the "VOYAGERS"

Voyager goes interstellar

Posted by: Avirup Basu
Dept: Science and Technology

Voyager 1 is a 722-kilogram (1,590 lb) space probe launched by NASA on September 5, 1977 to study the outer Solar System. Operating for 36 years and 11 days as of 16 September 2013, the spacecraft communicates with the Deep Space Network to receive routine commands and return data. At a distance of about 125 AU from the Sun as of August 2013, it is the farthest manmade object from Earth. The primary mission ended on November 20, 1980, after encounters with the Jovian system in 1979 and the Saturnian system in 1980. It was the first probe to provide detailed images of the two planets and their moons. As part of the Voyager program, like its sister craft Voyager 2, the spacecraft is in an extended mission to locate and study the regions and boundaries of the outer heliosphere, and finally to begin exploring the interstellar medium. On September 12, 2013, NASA announced that Voyager 1 had crossed the heliopause and entered interstellar space on August 25, 2012, making it the first manmade object to do so. As of 2013, the probe was moving with a relative velocity to the Sun of 17.037 km/s (38,110 mph; 61,330 km/h). The amount of power available to the probe is decreasing over time; by 2025, it will no longer be able to power any single instrument




"We made it! We are in interstellar space," said Voyager scientist Ed Stone of the California Institute of Technology in Pasadena, speaking at the briefing.  Solar storm aftershocks at the edge of the solar system provide confirmation that the Voyager 1 spacecraft made the passage on August 25, 2012, space agency scientists said Thursday.  On that date, Voyager 1 passed beyond the fringes of the sun's outward-flowing solar wind and into the interstellar space between the stars.  "It is an incredible event, to send the first human object into interstellar space," says study lead author Donald Gurnett of the University of Iowa in Iowa City. "It’s not quite the moon landing, but we are where the solar wind ends."


Finding the Solar System’s Edge

The solar wind flows outward from the sun traveling at one million miles (1.6 million kilometers) an hour, a bath of energetic particles that's blasted off the solar surface and into space, where it surrounds our star like a bubble.   At its edges, the solar wind piles up into the "interstellar wind," a cloud of cooler charged particles that suffuse the thin vacuum of space between stars. Since 2004, Voyager 1 had been traveling within the boundary region between the solar wind and the interstellar wind, which is the cooked-off debris of thousands of exploded stars in our Milky Way galaxy.   Knowing exactly where the solar wind ends and where interstellar space begins has been an open question among space scientists for more than four decades, says Stone.   Since an instrument for directly detecting that transition died in 1980, the researchers have had to rely on indirect measures of magnetic and electrical activity from other instruments aboard Voyager 1 to find an answer.   One key to identifying this boundary is the difference in the density of charged particles between the solar wind and interstellar space, as it is about 50 times greater in the latter region.  Looking at a pair of solar storms that caught up to the spacecraft last October and then again last April, Gurnett’s team reported that measured changes in electrical activity around Voyager correspond to interstellar space.   As the storms passed the spacecraft, they triggered spikes in electrical and radio waves that uniquely corresponded in frequency to the spacecraft having entered the more densely charged interstellar space.  Based on that increase, the team extrapolated the entry date for Voyager 1 into interstellar space as August 25, 2012.   "The spacecraft doesn't feel anything traveling into interstellar space. We can only detect the transition because of its instruments," says Stone, who was not on the study team.  The new report confirms an analysis made last year that found that Voyager had entered interstellar space, based on indirect measurements.  Stone finds the new report convincing: "Nature has finally given us a nice set of solar storms which show us that Voyager is now out in interstellar space."    Surprise! Galaxy, Sun's Magnetic Fields Aligned  Scientists were surprised by NASA's finding that the galaxy's magnetic field is apparently aligned in the same direction as the sun's, forming a "magnetic highway." Space scientists had generally assumed that the galaxy's magnetic field would have some other direction.   The alignment had stymied attempts to use magnetic measurements to determine a starting line for interstellar space.   "We have a lot to learn still, I think, is what it means," says Voyager scientist Stamatios Krimigis of the Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland, who reported the magnetic highway results last year.   Along with Voyager 1's measurement of increased galactic cosmic rays (the solar wind serves to partly shield the solar system from these high-powered rays), the new results have Krimigis "absolutely convinced."  "In the same way that Sputnik carried us out of the Earth's atmosphere in 1957, Voyager has now carried us outside the sun's atmosphere," Krimigis says. "It is quite an achievement in the short time that we have had spaceflight."   Given the estimated lifetime of the plutonium battery aboard Voyager 1, its last signals should be heard on Earth around 2025, Stone says. The spacecraft will eventually pass within 1.7 light years (about 16.1 trillion kilometers) of another star in 40,000 years, according to Voyager project manager Suzanne Dodd of NASA's Jet Propulsion Laboratory in Pasadena, California.  The spacecraft's twin, Voyager 2, which explored Jupiter, Saturn, Uranus, and Neptune, is also still kicking, now some 9.55 billion miles (15.36 billion kilometers) from the sun on its own journey.  "It has really been an exciting 40 years for the mission, and the next 10 years should be exciting ones as well," Stone says. "We are still exploring places we have never been."



Source: National Geography